
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Real-Time Ray Tracing in Unreal Engine

Vojtěch Vavera

Supervisor: doc. Ing. Jiří Bittner, Ph.D.
Field of study: Open Informatics
Subfield: Computer Games and Graphics
August 2020

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474642Osobní číslo:VojtěchJméno:VaveraPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačové hry a grafikaStudijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Sledování paprsku v réalném čase v Unreal Enginu

Název bakalářské práce anglicky:

Real-Time Ray Tracing in Unreal Engine

Pokyny pro vypracování:
Zmapujte dostupná rozhraní pro zobrazování pomocí metody sledování paprsků v reálném čase. Nastudujte a popište
možnosti efektů dosažitelných pomocí metod sledování paprsku v reálném čase dostupných v Unreal Enginu.
Vytvořte technologickou demonstrační aplikaci využívající sledování paprsků v Unreal Enginu a proveďte důkladné testy
kvality a rychlosti zobrazování. Součástí demonstrační aplikace bude hratelné demo, jehož cílem je předvést schopnosti
a omezení sledování paprsku v realném čase v herním nasazení.
Vyhodnoťte limity implementace z hlediska velikosti scény, možnosti jejich dynamických změn a složitosti zobrazovaných
efektů. Proveďte základní uživatelský test vytvořeného dema, který vyhodnotí subjektivní vnímání efektů simulovaných
sledováním paprsků ve srovnání se standardním zobrazovacím řetězcem.

Seznam doporučené literatury:
[1] Tomas Akenine-Moller et al. Real-Time Rendering (4th edition). CRC Press, 2018.
[2] Haines et al. Ray Tracing Gems, Apress, 2019.
[3] UE4 documentation, Ray-Tracing.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

doc. Ing. Jiří Bittner, Ph.D., Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 14.08.2020Datum zadání bakalářské práce: 11.02.2020

Platnost zadání bakalářské práce: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Jiří Bittner, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements

I would like to thank my supervisor, Dr.
Jiri Bittner, for providing friendly guid-
ance and important feedback throughout
this project.

Declaration

I hereby declare that the present bache-
lor’s thesis was composed by myself and
that the work contained herein is my own.
I also confirm that I have only used the
specified resources.

Prague, 14. August 2020

v

Abstract

The purpose of this paper is to test, eval-
uate, and demonstrate the capabilities of
Unreal Engine’s implementation of ray
tracing. The reader is introduced to the
topic of real-time ray tracing, as well as
the ray traced effects that are available in
Unreal Engine. As part of the evaluation
and testing of several sample scenes, tips
and techniques on how to optimize the sce-
narios are given. Throughout the paper,
we discuss the advantages and disadvan-
tages of using ray tracing in games while
giving performance figures to support the
claims.

Keywords: real-time ray tracing, unreal
engine, ray tracing in videogames, ray
tracing

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.

Abstrakt

Cílem této práce je otestovat, vyhodnotit
a přednést schopnosti implementace ray
tracingu v Unreal Enginu. Čtenáři jsou
představeny základní principy technolo-
gie Sledování Paprsků v Reálném Čase,
spolu s efekty založenými na této techno-
logii, jež jsou v Unreal Enginu dostupné.
V návaznosti na testování několika růz-
ných scénářů jsou vysvětleny a doporu-
čeny postupy pro optimalizaci scén, spolu
s výhodami a nevýhodami používání ray
tracingu.

Klíčová slova: sledování paprsků v
reálném čase, unreal engine, ray tracing
ve videohrách, ray tracing

Překlad názvu: Sledování paprsků v
reálném čase v Unreal Enginu

vi

Contents

1 Introduction 1

2 What is Ray Tracing 3

2.1 Basics of Ray Tracing 3

2.2 Ray Tracing APIs 5

2.2.1 NVIDIA OptiX 5

2.2.2 DirectX DXR 6

2.2.3 Vulkan Ray Tracing Extension 6

3 Ray Tracing in Unreal Engine 9

3.1 Setting Up Ray Tracing 9

3.1.1 System Requirements 9

3.1.2 Configuring a New Project . . 10

3.2 Available Effects and their
Settings . 11

3.2.1 Shadows 12

3.2.2 Reflections 12

3.2.3 Translucency 15

3.2.4 Ambient Occlusion 16

3.2.5 Global Illumination 17

4 Benchmarks 19

4.1 Testing Environment 19

4.2 Benchmark 1 - Room. 20

4.3 Benchmark 2 - Balls 23

4.4 Benchmark 3 - Shore 25

4.5 Non-RTX Performance 27

4.6 Scene Scalability Testing 28

4.7 Unreal Engine Version
Comparison . 31

5 Performance Optimization 33

5.1 Deciding Which Ray Tracing
Effects to Utilize 33

5.2 Denoising vs Samples per Pixel . 34

5.3 Other Ray Tracing Settings 36

6 Unreal Engine Ray Tracing
Demo 39

6.1 Controls . 39

6.2 Quality Settings 41

vii

6.3 Quality Presets User Testing . . . 43

7 Conclusion 51

A Bibliography 53

viii

Figures

2.1 An image showing an example of
how a ray could traverse a scene.
Source: nvidia.com. 4

2.2 Metro Exodus uses ray traced
global illumination. The difference is
especially visible in indoor scenes.
Source: gamestar.de. 6

2.3 Ray tracing in Wolfenstein:
Youngblood is handled by the Vulkan
API. Notice the difference in
reflections on the walls. Source:
khronos.org. 7

3.1 NVIDIA’s list of GPUs currently
supporting DXR (excluding the
newer, similiarly capable, SUPER
series of RTX cards). Source:
nvidia.com. 10

3.2 Properly set DirectX 12 launch
parameter for the target .exe. 11

3.3 Comparison between traditional
hard dynamic shadows and ray traced
soft shadows. Ray traced shadows
provide realistic smooth transition
between lit and shadow areas. 12

3.4 The screen space reflection on the
right side of this image lacks the
ability to reflect objects outside of
the camera’s view frustum. 13

3.5 Comparison of ray traced
reflections having: no shadows, hard
shadows, and area shadows. 13

3.6 Small number of bounces between
reflective objects can result in them
appearing to be black. 14

3.7 The settings panel for controlling
ray traced reflections. 14

3.8 The settings panel for controlling
ray traced translucency. 15

3.9 Various refraction settings; Index
of Refraction for this material is set
to 1. 15

3.10 A comparison of several settings
for the material’s refraction index. 16

3.11 Ray traced ambient occlusion is
more accurate and pronounced, adds
depth to the scene. 16

3.12 The difference between ray traced
and standard ambient occlusion is
more visible when we hide all but the
ambient occlusion layer. 17

3.13 The settings panel for controlling
ray traced ambient occlusion. 17

3.14 This picture shows that the Final
Gather method is susceptible to
artifacts. However, these are not as
prominent in well lit areas and
scenarios. Both Final Gather and
Brute Force use a single bounce and
8 samples in this image. 18

3.15 The settings panel for controlling
ray traced global illumination. 18

ix

4.1 Test bench hardware
specifications. 20

4.2 Benchmark 1 scene using the
HIGH preset. 20

4.3 Turning all the available ray traced
effects on decreases performance
severely, even on the RTX 2070S. . 21

4.4 Benchmark 1 test results for the
four quality presets and both GPUs. 21

4.5 Comparison between the MEDIUM
and HIGH presets of benchmark 1. 22

4.6 Comparison between the LOW and
HIGH presets of benchmark 1. 22

4.7 Benchmark 2 using the HIGH
preset. 23

4.8 Comparison between the OFF and
HIGH presets of benchmark 2. 23

4.9 Benchmark 2 test results for the
four quality presets and both GPUs. 24

4.10 Comparison between all the
presets of benchmark 2. 24

4.11 Benchmark 3 using the HIGH
preset. 25

4.12 Comparison between the OFF
and HIGH presets of benchmark 3. 25

4.13 Benchmark 3 test results for the
four quality presets and both GPUs. 26

4.14 Comparison between all the
presets of benchmark 3. 27

4.15 This figure shows a the scene of
the first test, with 1 and 48 sections
on each side. 28

4.16 Final graph showing the ray
tracing as well as rasterization data. 29

4.17 A figure showing what the ball
test scene looked like. 30

4.18 Final graph for the balls test,
both rendering techniques seem to
have linear complexity. 30

4.19 This is the final table containing
all the scalability testing data. 31

4.20 Comparison between the 4.23 and
the 4.24 versions of Unreal Engine,
using benchmark 2. 32

5.1 Comparison between the OFF and
HIGH presets of benchmark 3. 34

5.2 Comparison between a denoised
image and an image with higher
sample count. 35

5.3 Visual artefacts introduced by the
denoiser. 35

x

5.4 Demonstration of the Reflection
Capture Fallback reflection option. 36

5.5 The
RayTracingQualitySwitchReplace
node in action. 37

6.1 Table of controls and their key
bindings. 39

6.2 The menu, giving the options to
play one of the two scenes, tweak
resolution settings, and exit the
demo. 40

6.3 The first puzzle players encounter,
the goal is to navigate through a
mirror maze. 40

6.4 The Lobby, where the player
spawns upon launching the game; the
benchmarks and quality settings can
be controlled here. 41

6.5 This table contains detailed
settings and their values for each of
the quality presets. 42

6.6 Second part of the lobby, with
interactable labels of all the available
ray tracing settings. 43

6.7 A table of settings for each of the
presets available in the playable
demo. 44

6.8 A comparison of the presets and
their effect on the mirror maze puzzle
scene. 45

6.9 A comparison of the presets and
their effect on the global illumination
focused maze scene. 46

6.10 The first question of the survey. 46

6.11 The second question of the
survey. 47

6.12 The third question of the survey. 47

6.13 The fourth question of the
survey. 48

6.14 The fifth question of the survey. 48

6.15 The sixth question of the survey. 48

6.16 The seventh question of the
survey. 49

xi

Tables

xii

Chapter 1

Introduction

The goal of this project is to test the recently added ray tracing capabilities
of the Unreal Engine. Ray tracing is an increasingly popular rendering
method that promises accurate simulation of optical effects, based on real-
world physical laws. After the launch of NVIDIA’s RTX GPUs, many game
developers have started adopting the ray tracing technology, providing players
with new and improved visuals, based on ray traced effects, such as ray traced
shadows, reflections, or global illumination.

Epic Games have been working on implementing ray tracing features into
their Unreal Engine and released it to the public with the 4.22 version. In
the first part of this paper, readers are introduced to the topic of ray tracing,
focusing on real-time ray tracing in modern games. The introduction contains
a quick summary of available ray tracing APIs, as well as basic concepts of
creating a ray traced image.

To give context on how to set up a ray tracing project in Unreal Engine,
we show the procedure along with system requirements. Before diving into
the testing part, all the available ray traced effects are explained, along with
their settings and comparison of different options. The benchmarks that are
evaluated in later chapters consist of several different scenes, each aimed
to demonstrate and test a different effect. The performance evaluation is
supported by optimization tips and techniques available in Unreal Engine to
improve performance.

1

1. Introduction
The thesis also includes a ray tracing demo application which was created

in Unreal Engine and contains the benchmarking environment, as well as a
gameplay demo. The application can serve as a means of testing the reader’s
hardware, or simply to experience the ray traced effects first hand.

2

Chapter 2

What is Ray Tracing

Ray tracing is a graphics rendering technique used to simulate physically-
based light properties, to achieve believable reflections, refractions, shadows,
and indirect lighting. The first use of ray tracing dates back to 1968 when
Appel [HAM19] used it to render images and has been improved massively
since. Ray tracing is widely used to render high-quality 3D models, cinematic
visual effects (VFX) and even animated feature films.

During the last two years, there has been growing interest in the use of
real-time ray tracing, to enhance the visual quality of video games. However,
the technology available to the consumers never fulfilled the requirements, to
output ray traced images 30-60 times per second at a reasonable resolution.
NVIDIA changed that, by releasing their RTX 20-series GPUs, which promises
enough resources to tackle ray tracing in video games. Many developers have
since been able to implement ray traced effects into their games, and titles
such as Battlefield V and Shadow of the Tomb Raider, have become known
for their ray tracing enhanced graphics.

2.1 Basics of Ray Tracing

To produce a ray traced image, we use rays to gather information about the
scene’s lighting. A ray consists of its origin in space, and the direction it is
facing. We use ray casting, to shoot rays along their direction, to see whether
they hit something. However, ray casting on its own does not suffice as a tool

3

2. What is Ray Tracing
render the image with shadows, reflections and other shading effects.

Figure 2.1: An image showing an example of how a ray could traverse a scene.
Source: nvidia.com.

To create a ray-traced image, we start by shooting rays from individual
pixels of the camera’s image, into the scene. Whenever these primary rays hit
a surface, based on what they hit, they are reflected, refracted, or shot in the
direction of a light source, to determine shadows. The rules for determining
the direction of the child rays are based on how lighting works in the real
world. The are many different methods to determine the direction in which
to shoot the secondary rays, which in turn give us the final colour for each
pixel.

The rendering equation [Kaj86], shown below, is a stepping stone in the
creation of a ray-traced image; it describes how each point in the scene is
affected by light when viewed from a specific direction.

Lo(X, ω̂o) = Le(X, ω̂o) +
∫

S2
Li(X, ω̂o)fX(ω̂i, ω̂o) cos θi dω̂i

Solving the equation, we get radiance Lo, i.e. the total amount of incoming
and emitted light at point X when viewing it from direction ω̂o. To explain
the equation: Le is the amount of emitted light from point X itself, and
the integral over a hemisphere oriented around the surface normal collects
all the incoming light that is visible to the hemisphere. Li is the incoming
light weighted by the cosine of the angle between the surface normal and

4

...................................2.2. Ray Tracing APIs

the incoming light direction, and also weighted by fX , the Bi-directional
Reflectance Function (BRDF), which describes how light is reflected on an
opaque surface.[HAM19]

Using rays to solve the equation, we start by casting primary rays into the
scene. At each intersection point, we look at how much light is emitted from
the intersected object and add to the total incoming light. The incoming light
is recursively collected by casting additional rays into many different directions,
as described by the surface of the integral in the rendering equation. Adding
the emitted and incoming light, we now have the complete light information
for any given point in the scene.

The rendering equation is a complex problem, and there are many different
techniques for solving it [TR12]. We briefly described how ray tracing is used
together with the rendering equation to simulate physically-based lighting.
More detailed discussion and other techniques are out-of-scope of this thesis.

2.2 Ray Tracing APIs

Ray tracing APIs form a layer between the GPU and the application that
utilizes ray tracing, providing the developers with basic functionality, such
as ray data structures, scene representation structures, and data operations.
There are several APIs available, each with different advantages.

2.2.1 NVIDIA OptiX

Before the launch of RTX cards, NVIDIA created their OptiX API, which
is based on their CUDA programming model. OptiX provides a high-level
API for ray tracing support, as well as other GPU-accelerated calculations.
In OptiX version 5.0, NVIDIA introduced an AI-accelerated denoiser. Paired
with ray tracing, the denoiser allows the use of lower sample counts, resulting
in faster rendering of high-quality images. OptiX is used in many professional
applications, including the Arnold renderer by Autodesk. The Unity game
engine uses OptiX’s AI denoiser to produce high-quality lightmaps, and
recently Blender has adopted OptiX to accelerate their Cycles renderer with
CUDA GPUs.[OPX]

5

2. What is Ray Tracing
2.2.2 DirectX DXR

DirectX 12 DXR API is a ray tracing API made by Microsoft, fit mostly for
the Windows 10 operating system. For a GPU to access the DXR features,
it needs to be at a DirectX 12 hardware feature level 12_1 or above. This
restriction limits the selection of GPUs to NVIDIA’s Pascal, Turing, and Volta
family chips. Despite its limitations, the DXR API is starting to get widely
adopted by video game developers, who utilize it to introduce believable ray
tracing effects into their games and engines. DXR can be seen in games like
Battlefield V, Metro Exodus, or Call of Duty: Modern Warfare, but also in
the Unity game engine, where it enables ray tracing support.

Figure 2.2: Metro Exodus uses ray traced global illumination. The difference is
especially visible in indoor scenes. Source: gamestar.de.

2.2.3 Vulkan Ray Tracing Extension

In early 2020, Khronos Group released a new iteration of their ray tracing
extension to the Vulkan API. The new Vulkan Ray Tracing Extension provides
a cross-platform and multi-vendor framework, making it the most universal of
all APIs listed in this chapter. Vulkan-based ray tracing can be seen in action
in Wolfenstein: Youngblood, where it handles ray traced reflections.[RTV]

6

...................................2.2. Ray Tracing APIs

Figure 2.3: Ray tracing in Wolfenstein: Youngblood is handled by the Vulkan
API. Notice the difference in reflections on the walls. Source: khronos.org.

7

8

Chapter 3

Ray Tracing in Unreal Engine

Unreal Engine 4 is one of the early real-time ray tracing adopters in the
game engine industry. Ray tracing features are available to its users since
version 4.22, as a beta feature set. Unreal’s implementation of ray tracing
is based on the DirectX 12 DXR (DirectX Ray Tracing) API, which has
been integrated into the engine. Effects that are currently available include
ray-traced shadows, reflections, global illumination, ambient occlusion, and
translucency.

3.1 Setting Up Ray Tracing

3.1.1 System Requirements

To be able to use the ray tracing features, there are several requirements
to be met. Unreal Engine version 4.22 or later has to be installed on a
Windows 10 (Build 1809 or later) system, which includes DirectX 12 out
of the box. DirectX 12 feature level 12_1, which is needed for DXR API,
is currently supported only by a small selection of GPUs, specifically only
GPUs manufactured by NVIDIA (see figure 3.1). According to NVIDIA’s
post about DXR support, all Turing RTX graphics cards, along with some
Pascal, Volta, and Turing graphics cards support DXR.

9

3. Ray Tracing in Unreal Engine..............................

Figure 3.1: NVIDIA’s list of GPUs currently supporting DXR (excluding the
newer, similiarly capable, SUPER series of RTX cards). Source: nvidia.com.

AMD has been very slow with releasing updates about their cards support-
ing ray tracing. Cards like the Radeon VII and 5700 XT, although they should
have enough computing power to run some ray tracing enabled games, do not
come with drivers which would enable the DXR support feature. However,
it is rumoured, that AMD could release ray tracing enabled cards, based on
their RDNA2 7nm+ architecture, in 2020/21. [AMD]

3.1.2 Configuring a New Project

With a newly created or migrated UE 4.22 project, to enable ray tracing, we
need to open Project Settings, and under Platforms > Windows, the Default
RHI should be set to DirectX 12. Then under Engine > Rendering tick the
ray tracing attribute. If the Support Compute Skincache option has not been
enabled for the current project, a prompt pops up, asking us to enable this
option, which is required for ray tracing to work. Now the engine needs to be
restarted. At this point, before relaunching the engine, make sure that the
editor launches in DirectX 12 mode, by creating a shortcut for the Unreal
Engine Editor, and setting a -dx12 parameter in the target field (see figure
3.2).

10

........................... 3.2. Available Effects and their Settings

Figure 3.2: Properly set DirectX 12 launch parameter for the target .exe.

3.2 Available Effects and their Settings

As mentioned in the previous chapter, Unreal Engine currently supports
several ray tracing effects. These include ray traced shadows, reflections,
global illumination, ambient occlusion, and translucency. To give control over
these effects, UE4 exposes the controls via its Post Process Volume object.
To set up the Post Process Volume for a scene is as simple as dragging it into
the current level from the class browser. The Post Process Volume can then
be resized to influence a specified area or made global by setting the Infinite
Extent (Unbound) parameter to true.

11

3. Ray Tracing in Unreal Engine..............................
3.2.1 Shadows

Contrary to other ray tracing effects in UE4, light shadows are set separately,
per light source. Each light has a Cast ray tracing Shadows option in its
Details panel, which turns the ray traced shadows on/off. Samples Per Pixel
can also be adjusted on each light separately, to control the quality of the
shadow. See figure 3.3 for comparison between a default Shadow Map and
ray traced shadow.

Figure 3.3: Comparison between traditional hard dynamic shadows and ray
traced soft shadows. Ray traced shadows provide realistic smooth transition
between lit and shadow areas.

To control the sharpness of the shadow for Soft Area Shadows, we use the
Source Angle (Radius) parameter of the light. Additionally, much like in real
life, the greater the distance between the shadow caster and the shadow, the
softer the shadow becomes.

3.2.2 Reflections

Ray traced reflections are one of the more noticeable ray tracing effects, as
they allow reflection of both dynamic objects and objects that are out of the
camera’s view frustum. To engage ray traced reflections, we switch the Type
of reflections in the Post Process Volume to ray tracing.

12

........................... 3.2. Available Effects and their Settings

Figure 3.4: The screen space reflection on the right side of this image lacks the
ability to reflect objects outside of the camera’s view frustum.

There are several modifiable parameters of the ray traced reflection (see
figure 3.7), which allow for great control over the performance cost of the effect.
Shadows selection allows choosing between Hard Shadows, Area Shadows and
shadows completely Disabled, see figure 3.5 for comparison.

Figure 3.5: Comparison of ray traced reflections having: no shadows, hard
shadows, and area shadows.

Max Roughness sets the maximum roughness for materials to receive ray
traced reflections, Screen Space Reflection methods are used otherwise. Max

13

3. Ray Tracing in Unreal Engine..............................
Bounces limits the number of times a single ray can bounce off of surfaces
enabled for ray traced reflections by the Max Roughness setting. The number
of bounces is especially important when dealing with multiple highly reflective
objects placed close to each other, as an insufficient number of bounces can
result in black gaps instead of reflected objects (see figure 3.6).

Figure 3.6: Small number of bounces between reflective objects can result in
them appearing to be black.

To include translucent objects in the reflections, we can toggle the Include
Translucent Objects variable. Samples Per Pixel control, how many times a
ray is cast for each pixel. Higher sample count results in a clearer image, at
the expense of performance.

Figure 3.7: The settings panel for controlling ray traced reflections.

14

........................... 3.2. Available Effects and their Settings

3.2.3 Translucency

Ray traced translucency is mainly used to render objects such as glass or
water with accurate reflections and refractions of incoming light. In UE4 it is
enabled in the Post Process Volume and has several modifiable parameters
(see figure 3.8).

Figure 3.8: The settings panel for controlling ray traced translucency.

Similarly to ray traced reflections, we can choose the reflected shadow
type, maximum roughness cutoff, and samples per pixel. When modifying
the parameters of ray traced translucency, we need to pay attention to the
number of bounces we allow each ray to make. When the Refraction variable
is set to true, the translucent object starts to refract the incoming light. For
the ray to exit the refracting object, we need at least three bounces in total;
otherwise, the object appears black (see figure 3.9). The number of bounces
for the refraction ray is set via the Max Refraction Rays parameter.

Figure 3.9: Various refraction settings; Index of Refraction for this material is
set to 1.

15

3. Ray Tracing in Unreal Engine..............................
To describe how the translucent object refracts light, we use the Index of

Refraction (IOR), which in UE4 corresponds to the specular component of
the object’s material. The refraction index describes how fast light travels
in a given material, which is used to determine the angle of the refracted
ray entering the material. See figure 3.10 for comparison of several Index of
Refraction values.

Figure 3.10: A comparison of several settings for the material’s refraction index.

3.2.4 Ambient Occlusion

Figure 3.11: Ray traced ambient occlusion is more accurate and pronounced,
adds depth to the scene.

16

........................... 3.2. Available Effects and their Settings

Figure 3.12: The difference between ray traced and standard ambient occlusion
is more visible when we hide all but the ambient occlusion layer.

Ray traced ambient occlusion achieves a more natural-looking scene with
physically correct ambient occlusion. The behaviour of ray traced ambient
occlusion can be controlled with the Intensity and Radius parameters in the
Post Process Volume, where the Samples per Pixel count can be adjusted as
well (see figure 3.13). Radius determines the area around the occluded object
that is taken into consideration when deciding the amount of ambient light
being blocked.

Figure 3.13: The settings panel for controlling ray traced ambient occlusion.

3.2.5 Global Illumination

Ray traced global illumination calculates how the light bounces off of objects
and into the scene in real-time, to form indirect lighting. In UE4 (version 4.24
and later), there are currently two methods for calculating ray traced global

17

3. Ray Tracing in Unreal Engine..............................
illumination. While the Brute Force method is based on the Path Tracing
algorithm and is computationally expensive, the new Final Gather method
has been developed to give similar results, while reducing the performance
hit. The latter of the two is currently limited to a single bounce, and is, in
some cases, susceptible to ghosting and artefacts. However, it gives back the
much-needed performance at minor costs in image quality (see figure 3.14 for
comparison of the two methods).

Figure 3.14: This picture shows that the Final Gather method is susceptible to
artifacts. However, these are not as prominent in well lit areas and scenarios.
Both Final Gather and Brute Force use a single bounce and 8 samples in this
image.

The Post Process Volume allows us to set what global illumination method
we want to use, the maximum number of bounces for each ray, and how many
ray samples to use for each pixel. In UE4 version 4.24, it is recommended by
the developers to use Max Bounces of 1 and Samples per Pixel of 8, to get
the best results when using Final Gather.

Figure 3.15: The settings panel for controlling ray traced global illumination.

18

Chapter 4

Benchmarks

In this chapter, we look at several different benchmarks and scenarios of
ray tracing use in Unreal Engine. Each scenario was constructed to target
and test a different set of ray traced effects. The results can serve as an
indicator of what levels of performance can be expected, when developing
a game in Unreal Engine, using real-time ray tracing. During this chapter
we test several quality presets (OFF, LOW, MEDIUM, HIGH), which are
described in detail in Chapter 6. The presets were created to allow simple
change of multiple settings at once, to mimic graphics quality settings in
video games. Please note, that the following chapter’s purpose is not to give
tips on how to optimize scenes that use ray traced effects; for performance
optimization tips and techniques, see Chapter 5.

4.1 Testing Environment

The tests aim to show what the performance of ray tracing in Unreal Engine
looks like and try to answer whether an older card, not designed with ray
tracing in mind, can be used to achieve acceptable results. The two cards
tested were the NVIDIA GTX 1080 and the NVIDIA RTX 2070 SUPER,
both running at stock clock speeds. The rest of the hardware components
stayed the same for both GPUs, and are listed in figure 4.1.

19

4. Benchmarks

Figure 4.1: Test bench hardware specifications.

When it comes to testing GPU performance, one of the important factors
is the driver; especially so for ray tracing, where data structures and other
driver-related software play a significant role. Both GPUs were tested with
the latest Game Ready driver from NVIDIA - 441.87 (released January 6,
2020).

4.2 Benchmark 1 - Room

Figure 4.2: Benchmark 1 scene using the HIGH preset.

The first benchmark, mostly based on the freely available Starter Map from
UE4 example project, takes place in an indoor scene with multiple light sources,
translucent objects and semi-reflective surfaces (see figure 4.2). Generally
speaking, indoor scenes are more demanding when using ray tracing; this is

20

................................. 4.2. Benchmark 1 - Room

because of how light bounces off of walls back into the scene, creating more
rays with each reflection/refraction.

Figure 4.3: Turning all the available ray traced effects on decreases performance
severely, even on the RTX 2070S.

Figure 4.3 compares what the scene looks like with ray tracing turned
completely OFF to what it looks like set to the HIGH preset. We can see
that the ray traced reflections on the metal parts of the table as well as on
the translucent statue look much more realistic. The ray traced shadows are
also much more accurate and add depth to the scene, which is essential when
rendering indoor environments. However, looking at the performance of the
HIGH preset (see figure 4.4), we are looking at framerates of around 7 FPS,
which is very low for any user interaction, and would require a more powerful
RTX GPU.

Figure 4.4: Benchmark 1 test results for the four quality presets and both GPUs.

A more sensible approach to enhancing this scene with ray tracing would be
to dial down the number of bounces for the reflections and samples per each
pixel. This option is represented by the MEDIUM preset, and is displayed in
figure 4.5. Comparing the MEDIUM and HIGH presets, we get a slight, but

21

4. Benchmarks
an almost unnoticeable decrease in visual quality. However, the framerate has
improved drastically, and the scene now runs at 19 FPS, using the MEDIUM
preset.

Figure 4.5: Comparison between the MEDIUM and HIGH presets of benchmark
1.

To increase the framerate even further, we can disable some of the less
noticeable effects; the LOW preset does not utilize ray traced global illumina-
tion and does not use refractions and shadows for translucent objects. While
the framerate increase from 19 to 25 FPS is noticeable, we lose a lot of visual
fidelity and detail (see figure 4.6). Notice how the shadows and some parts of
the metallic objects are much darker, because of the low number of bounces
and lack of ray traced global illumination.

Figure 4.6: Comparison between the LOW and HIGH presets of benchmark 1.

Comparing the LOW, MEDIUM, and HIGH preset images, the HIGH
preset makes sense only if we are targeting users with high-end GPUs, and
are focused on storytelling rather than on fast-paced action gameplay. The
LOW and MEDIUM presets, on the other hand, can be used even on mid-tier
GPUs, such as the RTX 2070. To achieve higher framerates, we would need
to optimize the scene better, but this is also likely to improve with future
updates of the engine and GPU drivers.

22

................................. 4.3. Benchmark 2 - Balls

4.3 Benchmark 2 - Balls

Figure 4.7: Benchmark 2 using the HIGH preset.

While the first benchmark took advantage of all the ray tracing effects
available, the second benchmark is heavily focused on reflections. It consists of
roughly two thousand shiny metallic balls placed in a metallic cube container.
The balls are lit by the skylight (the sky), directional light (the sun) and four
additional coloured lights (see figure 4.7), to give off nice reflections.

Figure 4.8: Comparison between the OFF and HIGH presets of benchmark 2.

Looking at the comparison between OFF and HIGH presets, we see that
the ray traced reflections make the steel material appear realistic, giving it
the shininess metallic materials need. Looking at the performance (see figure
4.9), there is once again a massive drop in performance, although, at 10 FPS
using the HIGH preset, it is slightly higher than the first benchmark.

23

4. Benchmarks

Figure 4.9: Benchmark 2 test results for the four quality presets and both GPUs.

However, a problem arises when we try to use the MEDIUM, and the LOW
presets. For this type of scene, where we have lots of reflective objects, the
number of max bounces is very crucial. As we discussed earlier, the lower the
number of max bounces, the darker the objects appear. Looking at figure
4.10, we see that by turning the quality preset to MEDIUM and LOW, the
walls become much darker, and the shininess of the balls decreases.

Figure 4.10: Comparison between all the presets of benchmark 2.

To brighten up the scene and try to trick the viewer’s eye into thinking it
sees a high number of bounces, we can use the Reflection Captures as the
last bounce of the reflection. This method is further discussed, along with an

24

................................. 4.4. Benchmark 3 - Shore

example, in Chapter 5.

4.4 Benchmark 3 - Shore

Figure 4.11: Benchmark 3 using the HIGH preset.

So far, we have tested how Unreal Engine’s implementation of ray tracing
performs in an indoor scene, and in a synthetic environment focused on
testing reflections. In the third benchmark, we look at a complex outdoor
scene, with detailed geometry. This benchmark aims to represent the typical
environment of a modern AAA title and includes high-poly models of trees,
vegetation, cliffs and rock structures. The scene also contains a body of water
to add a reflective element.

Figure 4.12: Comparison between the OFF and HIGH presets of benchmark 3.

Comparing the OFF and HIGH presets (see figure 4.12), at first glance,

25

4. Benchmarks
the differences may appear very subtle. However, upon closer inspection, we
see the detail of the ray traced shadows, the reflection in the water, and the
natural-looking colour of the leaves. The ray traced translucency is able to
display more of the leaves correctly, and the ray traced shadows give the tree
crown more depth. When we look at the performance (see figure 4.13), we
notice that the overall performance is, yet again, better than the previous
benchmarks. The performance is more consistent across the presets than the
previous ones, because the scene does not contain many reflective surfaces,
and since it is outdoors, many rays end up hitting the sky sphere.

Figure 4.13: Benchmark 3 test results for the four quality presets and both
GPUs.

That said, dropping the quality settings down (see figure 4.14), we see
that the lack of translucency shadows on the LOW preset makes this preset
unusable, due to the way the leaves are displayed. The MEDIUM preset,
although it has a lower number of samples, looks very similar to the HIGH
preset, while providing a boost in performance. Overall, because the scene
does not have very reflective surfaces, nor does it have dark spots, it allows
the number of samples per pixel to be dropped while retaining the visual
fidelity.

26

................................ 4.5. Non-RTX Performance

Figure 4.14: Comparison between all the presets of benchmark 3.

However, if we were to use this scene in a game, where the player would not
be able to spend much time exploring the details, such as individual leaves
of the trees, the OFF preset without any ray tracing would probably be the
best option. The difference in performance between turning the ray tracing
on and off for this particular scene is far too great to justify the minimal
difference in visual quality.

4.5 Non-RTX Performance

As part of the testing process, all three benchmarks were tested on the
NVIDIA GTX 1080, to see, what kind of framerates it would deliver. Since
the GTX 1080 supports DXR, running the tests required no additional setup,
and ray tracing worked instantly. However, looking at the results (see figures
4.4, 4.9, 4.13) we see, that, at least with current ray tracing algorithms and
data structures, the older Pascal-based GPU is not very capable. The demo
was unplayable, and we encountered frequent freezes.

27

4. Benchmarks
The results that we observed were to be expected, as the GTX 1080 has a

peak throughput of just below 1 Gigarays/s, while the RTX 2070 Super is
rated for peak throughput of 7 Gigarays/s, thanks to its RT (Ray Tracing)
cores. Now, the metric of Gigarays per second can not be used to precisely
calculate the difference in performance we should expect to receive. NVIDIA
mentions these numbers as rough estimates for when the card is operating in
ideal conditions processing synthetic datasets, that usually do not represent
typical workloads, such as games or rendering.

In our tests though, we see that the RTX 2070 Super performed anywhere
between 3-8 times better than the GTX 1080. The increase in performance
goes to show, that while the ray tracing capabilities of the latest RTX Series
cards are better by a significant margin compared to older-gen GPUs, it is
still not enough for RayTraced-only real-time rendering.

4.6 Scene Scalability Testing

In benchmark no. 3, where we tested ray tracing performance in an open
environment scene, models of the trees were intentionally chosen to contain
a high number of polygons. This was done to simulate crowded scenes of
modern video game titles. In this chapter, we look closely at how ray tracing
performs when scaling the number of objects in our scene, compared to
rasterization.

Figure 4.15: This figure shows a the scene of the first test, with 1 and 48 sections
on each side.

28

............................... 4.6. Scene Scalability Testing

For our first test, we took the high-poly tree model, with some other
translucent and reflective assets, and formed a section (see fig. 4.15). During
the first test, we took measurements with an increasingly higher number of
section. Based on the results, we can plot a performance graph, with GPU
frame times on the Y-axis and scene triangle count on the X-axis.

Figure 4.16: Final graph showing the ray tracing as well as rasterization data.

Looking at the graph in figure 4.16, we see that, as expected, the ray
tracing performance was worse overall, especially with lower triangle counts;
however, ray tracing seems to scale better than rasterization, with close to
logarithmic complexity. The theoretical logarithmic complexity of ray tracing
is based on its search algorithms in scene acceleration trees, compared with
linear complexity of rasterization. Note that rasterization can be further
optimized to reduce the complexity by using levels of detail (LODs) and
occlusion culling in demanding scenes.

29

4. Benchmarks

Figure 4.17: A figure showing what the ball test scene looked like.

For our second test of ray tracing scalability, we used the shiny balls from
benchmark no. 2. During this test, we dropped roughly 2 000, 4 000, 6 000,
and finally 8 000 balls into a container using physical simulation (see figure
4.17), and measured GPU draw times, after the balls settled. The graph in
figure 4.18 plots the results.

Figure 4.18: Final graph for the balls test, both rendering techniques seem to
have linear complexity.

30

........................... 4.7. Unreal Engine Version Comparison

The graph has the same layout as the one in the first test - GPU draw
times on Y-axis, triangle count on the X-axis. However, the results seem
quite different. This time, both rendering methods seem to have a linear
complexity. This can be explained by the fact that the scene consists purely
of reflective surfaces. Real-time ray traced reflections are a costly effect, and
we can see from the measured values that they do not scale very well. What
was more interesting, however, was the fact that the draw times were fairly
consistent even when the balls were affected by physics, falling down into the
container.

Figure 4.19: This is the final table containing all the scalability testing data.

Finally, figure 4.19 shows a table of all measured values, including triangle
counts, GPU draw times, as well as separate reflection and global illumination
call times. Note that during the testing of the tree section scene, rasterization
failed to display the two highest triangle counts, with Unreal Engine crashing
each time we tried to display the scene. The fact that ray tracing was able
to display more triangles than rasterization only proves that it scales better
with scene complexity, at least when it comes to the number of triangles.

4.7 Unreal Engine Version Comparison

Since the addition of ray tracing into Unreal Engine has been made quite
recently (version 4.22 was the first to ship with ray tracing in Spring 2019),
Epic Games has put a vast amount of effort into optimizing the newly added
feature. They have also been adding new features such as the Final Gather
algorithm for better optimized ray traced global illumination. As part of the
testing, we have tested the second benchmark with both the 4.23 and the
latest 4.24 version of Unreal Engine, to see, whether there are measurable
improvements in performance.

31

4. Benchmarks

Figure 4.20: Comparison between the 4.23 and the 4.24 versions of Unreal
Engine, using benchmark 2.

Figure 4.20 presents the results of the testing. We can see that Unreal
Engine version 4.24 is performing consistently better than the older 4.23.
(Please note that the MEDIUM preset in 4.23 uses the Brute Force global
illumination method - single bounce and sample, as the Final Gather was
added in the 4.24 version of Unreal Engine). Some of the improvements in
framerates are quite significant. One of the issues with the 4.22 and 4.23
versions was that even though all the ray tracing effects were turned off, the
fact that ray tracing was enabled for the project resulted in some ray tracing
draw calls. These draw calls caused the performance, especially on the GTX
1080, to be significantly reduced.

32

Chapter 5

Performance Optimization

In this chapter, we talk about optimizing scenes which use ray traced effects.
When building a ray traced scene, it is essential to take into consideration the
amount of detail the player is likely to notice and balance that information
with the amount of performance we want to sacrifice for the added visual
quality. Later in the chapter, we also mention some additional settings that
are available via the Unreal Engine console and allow developers to fine-tune
the detail vs performance balance.

5.1 Deciding Which Ray Tracing Effects to Utilize

Ray traced effects are computationally demanding; we explained that in
Chapter 4, where we focus on testing the performance of ray tracing in Unreal
Engine. When we look at modern games that utilize ray tracing to enhance
their visual quality, we see that even AAA titles use only a couple, often a
single, ray traced effects. To give some examples: the latest Call of Duty:
Modern Warfare, uses ray tracing only for local light shadows. Battlefield V
uses ray tracing to calculate the reflections of some shiny surfaces, and Metro:
Exodus, uses ray traced global illumination.

33

5. Performance Optimization
The reason we do not see many ray traced effects coupled together, is mostly

performance. The penalty for using ray tracing, may it only be for reflections
or shadows alone, is often as drastic as 20-30% of overall performance, even
when using the latest RTX GPUs. Framerate drops that big, are hardly
justifiable, given modern methods of approximating results of ray traced
algorithms are close to reality.

Figure 5.1: Comparison between the OFF and HIGH presets of benchmark 3.

If we look at the comparison between the OFF and HIGH presets for the
third benchmark (see figure 5.1), the difference does not become apparent,
until we inspect the images next to each other. The scene simply is not fit
for ray tracing, as its design does not benefit from ray tracing advantages.

5.2 Denoising vs Samples per Pixel

Denoising relies on dedicated algorithms to clear up the image to reduce
the number of sample per pixel needed for a clear image. In Unreal Engine,
denoising can be turned on individually for each ray traced effect, by using
the corresponding command in the editor console. Looking at figure 5.2,
we notice that the legs of the chair and table look less distorted and less
noisy when using a lower number of samples per pixel with the denoiser. The
denoised option also performs much better.

34

.............................5.2. Denoising vs Samples per Pixel

Figure 5.2: Comparison between a denoised image and an image with higher
sample count.

That said, using the denoiser does not always guarantee the best results.
Figure 5.3 shows one such example, where the denoiser generates visual
artefacts when applied on the ray traced global illumination. The performance
does still improve when using the denoiser, but might not be worth the
degradation in visual quality.

Figure 5.3: Visual artefacts introduced by the denoiser.

35

5. Performance Optimization
5.3 Other Ray Tracing Settings

Aside from the settings available in the Post Process Volume and each Light
actor, Unreal Engine allows additional adjustment of the ray tracing settings
via its console commands. [UER]

Figure 5.4: Demonstration of the Reflection Capture Fallback reflection option.

The Reflection Capture Fallback option sets the last bounce of each reflec-
tion ray to be evaluated from the Reflection Capture Spheres, which results
in an image that retains most of the qualities of the ray traced reflections, but
solves the problem of dark objects (see figure 5.4). This option could be used
to reduce the overall number of reflection bounces, to increase performance,
as the fallback has little to no performance cost.

Another way to increase performance is to adjust the distance each ray can
travel before being dismissed. The MaxRayDistance can be set for ray traced
skylights, reflections, translucency and global illumination, using the editor
console. It can help in scenes where we do not require the ray traced effects
to be affected by the whole surroundings or can get away with a slightly less
precise result.

Unreal Engine also provides a useful tool to optimize materials for use
with ray tracing. Their blueprint tool for creating materials features a
RayTracingQualitySwitchReplace node (see figure 5.5), which outputs one
of two predefined inputs, based on whether ray tracing for that material is
enabled or disabled.

36

.............................. 5.3. Other Ray Tracing Settings

Figure 5.5: The RayTracingQualitySwitchReplace node in action.

37

38

Chapter 6

Unreal Engine Ray Tracing Demo

This chapter covers the functionality and controls of the ray tracing demo
application, which can be downloaded from the project’s website: http:
//ueraytracing.dcgi.fel.cvut.cz/. The purpose of this application is
for the reader to be able to test the ray tracing capabilities of their system
and to give perspective on how the ray traced effects look and behave when
navigating the scene.

6.1 Controls

Figure 6.1: Table of controls and their key bindings.

39

http://ueraytracing.dcgi.fel.cvut.cz/
http://ueraytracing.dcgi.fel.cvut.cz/

6. Unreal Engine Ray Tracing Demo............................
Figure 6.1 shows the control bindings for the application, which are similar

to any modern First Person video game. After launching the demo, users
are greeted with a menu, allowing the change of resolution, as well as giving
them the option of two play modes (see figure 6.2).

Figure 6.2: The menu, giving the options to play one of the two scenes, tweak
resolution settings, and exit the demo.

The first button - Play - starts an FPS-maze style game, where the player
needs to navigate three areas to get to the finish. While on the quest of
completing the three puzzles, users can switch between three quality settings
(Low, Medium, High), which affect visuals and performance. For more
information about the quality settings for this portion of the demo, see
chapter 6.2 and 6.3.

Figure 6.3: The first puzzle players encounter, the goal is to navigate through a
mirror maze.

40

................................... 6.2. Quality Settings

The second button - Benchmark - loads up a scene which we used as an
environment for most of the testing conducted in chapter 4. Here the users
can toggle between four different quality presets using either the assigned
keys or by interacting with their respective buttons in the Lobby.

Figure 6.4: The Lobby, where the player spawns upon launching the game; the
benchmarks and quality settings can be controlled here.

The Lobby (see figure 6.4) also contains buttons to initiate each of the three
benchmarks described in Chapter 4, which can launched using the ’E’ key.
Every time a benchmark is finished, the average FPS recorded is displayed
under the button which was used to start that benchmark. Aside from the
Lobby, the scene consists of two locations - the Room and the Shore, which
can be discovered and explored by the player freely.

6.2 Quality Settings

The demo app features five quality presets, which alter the ray tracing
quality settings. Figure 6.5 lists every setting with its assigned value, that
is influenced by the presets. Please note, that, as described in Chapter 5,
Unreal Engine allows for additional tweaking of the ray tracing settings such
as ray distance, denoising settings, and reflection capture fallback. At the
moment, these settings are not influenced by the quality presets, although
this may change in future updates of the ray tracing demo application.

41

6. Unreal Engine Ray Tracing Demo............................

Figure 6.5: This table contains detailed settings and their values for each of the
quality presets.

While all five options are available in the benchmarking scene, only the
Low, Medium, and High presets can be toggled in the puzzle game part.
This effectively means that at the moment, there is no option to turn ray
tracing completely off while playing the puzzle game scene. Furthermore, the
benchmarking scene provides users with the Custom preset. The Custom
preset allows for individual tweaking and testing of each setting and is
controlled by interacting (E) with corresponding labels located on a wall
adjacent to the Lobby, shown in figure 6.6.

42

.............................. 6.3. Quality Presets User Testing

Figure 6.6: Second part of the lobby, with interactable labels of all the available
ray tracing settings.

6.3 Quality Presets User Testing

In this section, we test how well we have designed the quality presets for
the playable demo. As mentioned in the previous section, there are three
quality presets in the gameplay part - LOW, MEDIUM, HIGH. The goal is
to test whether the presets are well balanced in terms of visual quality and
performance ratio. Figure 6.7 shows a table of all three presets with their
specific settings.

43

6. Unreal Engine Ray Tracing Demo............................

Figure 6.7: A table of settings for each of the presets available in the playable
demo.

Before we look at user opinions, let us look at two examples of the presets
in action. The first puzzle, which is a mirror maze (see figure 6.8), is heavily
dependant on the quality of reflections; it is especially influenced by the
number of reflection ray bounces, which determine how ’far’ we see into each
mirror. It seems that the LOW preset does not provide much in terms of
visual quality, while the MEDIUM preset provides acceptable frame times
with minimum visual difference to the HIGH preset.

44

.............................. 6.3. Quality Presets User Testing

Figure 6.8: A comparison of the presets and their effect on the mirror maze
puzzle scene.

Another example shows the last puzzle of the demo, with a focus on global
illumination. Looking at figure 6.9, we see there is minimal difference between
the LOW and MEDIUM presets, both in visual quality and performance.
The effect that is mostly affecting the performance of this scene is global
illumination. Looking back at the preset settings table (figure 6.7), the LOW
preset is using the Final Gather method and the MEDIUM preset uses the
Brute Force method. Comparing these single-bounce results with the two
bounces when using the HIGH preset, the visual difference is noticeable,
mainly because we are looking at an indoor scene only lit by several lights.

45

6. Unreal Engine Ray Tracing Demo............................

Figure 6.9: A comparison of the presets and their effect on the global illumination
focused maze scene.

During the testing, we asked a dozen users to play through the gameplay
demo, at the end of which was a button linked to a short survey. The survey
mainly focused on finding out what the users thought about the distribution
of the presets - whether they were balanced in terms of visual quality vs
performance.

Figure 6.10: The first question of the survey.

The first question (see figure 6.10) was a simple check for the GPU used to
test demo. This question served mostly the purpose of filtering out answers
with non-RTX GPUs, as they would potentially be evaluated separately and
differently. None of the answers submitted contained a non-RTX GPU.

46

.............................. 6.3. Quality Presets User Testing

Figure 6.11: The second question of the survey.

The second question of the survey (see figure 6.11), asked the users which
preset they played with most of the time. Paired with the next questions,
which ask how each of the presets performed and felt, we wanted to find
out whether the users prefered performance over visual quality, or the other
way round. From the twelve answers we collected, eight users preferred the
MEDIUM preset, while the rest were split between LOW and HIGH.

Figure 6.12: The third question of the survey.

The third question (see figure 6.12) is by far the most controversial one.
We asked whether the users thought that the presets were equally spaced
- whether they provided equal steps in visual quality vs performance ratio.
While half of the testers agreed with the preset spacing, the other half was
mixed between ’Not Sure’ and ’No’. Based on answers from other questions
in the survey, it became obvious that the performance between the MEDIUM
and HIGH presets was very high, especially when compared with the little to
no performance difference between the LOW and MEDIUM presets.

The following three questions each discuss one individual quality preset.
We asked the users how the game felt, how it looked, how was the performance.
We wanted to gather additional data for each of the presets so that it would
be possible to analyze our settings choices for individual presets further.

47

6. Unreal Engine Ray Tracing Demo............................

Figure 6.13: The fourth question of the survey.

The fourth question (see figure 6.13) asks about the user experience when
playing with the LOW preset. As expected, many users complained that the
game looked ugly; some even thought that rasterization would look better.
On the other hand, performance seemed decent across all users.

Figure 6.14: The fifth question of the survey.

The fifth question (see figure 6.14) discusses the MEDIUM preset. This
seemed to be the sweet spot for most of the players, confirming the outcome of
the second question (Which preset did you use most of the time?). As reported
by the users, while playing on MEDIUM, the game felt comparably smooth
to the LOW preset, while providing a significant increase in performance.

Figure 6.15: The sixth question of the survey.

The sixth question (see figure 6.15) asks about the HIGH preset. The users
reported that the game was very choppy, which eliminated the increase in
visual quality. Based on the answers, it seems that we failed to design the
HIGH preset so that it would even be considered as an option when playing
the game.

48

.............................. 6.3. Quality Presets User Testing

Figure 6.16: The seventh question of the survey.

The final seventh question (see figure 6.16) allowed the users to add any
additional message or piece of information. While trying the various presets,
two users noticed that the difficulty of the second puzzle - the mirror maze -
was heavily influenced by the preset they chose. This is one of the problems we
encountered when designing the demo, especially with ray traced reflections,
as the number of bounces significantly influences what the player sees. In
this case, when playing on the LOW preset, two reflection bounces give very
little information for the player to navigate the maze (see figure 6.8).

Overall the survey proved very useful to analyze the created presets. While
the presets provide some control over the performance, they are not very well
balanced and require further changes. Optimization of the whole demo is also
needed, as there are still options we can tweak to balance the performance.

49

50

Chapter 7

Conclusion

This thesis analyzed the ray tracing capabilities of Unreal Engine and show-
cased them on playable demos, which are available for the reader to try. We
summarized the basics of ray tracing and explained why the technology is
becoming increasingly more popular amongst game developers. In the last
part, we conducted a short user survey, to test the created quality presets,
and to evaluate the visual quality vs performance ratio of the demo.

We have experimented with many options, settings, and setups regarding
Ray Tracing in Unreal Engine. It became apparent that while some scenes do
benefit from the new technology, others are not great candidates, as the Ray
Tracing effects provide little to no visual improvement at a high computational
cost. Comparing the GTX 1080 and RTX 2070 Super performance, non-RTX
GPUs do not have enough computing power to produce playable framerates,
even with most of the ray traced effects disabled.

This thesis can serve as an introduction to Unreal Engine’s Ray Tracing
capabilities. It can help readers in setting up a basic project of their own
while giving them valuable insight on how to improve the scene’s performance.
Moving forward, we would like to iterate on the tests, observing the impact
of individual settings on the engine’s performance. The included demo also
requires more work, as there is plenty of room for optimization, to improve
the framerates across all quality settings.

51

52

Appendix A

Bibliography

[AMD] Amd rdna 2, https://www.pcgamer.com/
amd-rdna2-release-date-big-navi-specs-price-performance/,
Accessed: 2020-01-12.

[AMT18] Hoffman Naty Akenine-Moller Tomas, Haines Eric, Real-time ren-
dering, CRC Press, 2018.

[App68] Arthur Appel, Some techniques for shading machine renderings of
solids, AFIPS ’68, 1968.

[HAM19] Eric Haines and Tomas Akenine-Möller (eds.), Ray tracing gems,
Apress, 2019, http://raytracinggems.com.

[Kaj86] James T. Kajiya, The rendering equation, ACM SIGGRAPH Com-
puter Graphics, 1986.

[OPX] Nvidia optix ray tracing engine, https://developer.nvidia.com/
optix, Accessed: 2020-08-05.

[Rec07] Meinrad Recheis, Realtime ray tracing, Vienna University
of Technology, 2007, https://www.cg.tuwien.ac.at/courses/
Seminar/SS2007/RealtimeRayTracing-Recheis.pdf.

[REE] Ray tracing essentials part 6: The rendering
equation, https://news.developer.nvidia.com/
ray-tracing-essentials-part-6-the-rendering-equation/,
Accessed: 2020-08-03.

[RTV] Ray tracing in vulkan, https://www.khronos.org/blog/
ray-tracing-in-vulkan, Accessed: 2020-08-04.

53

https://www.pcgamer.com/amd-rdna2-release-date-big-navi-specs-price-performance/
https://www.pcgamer.com/amd-rdna2-release-date-big-navi-specs-price-performance/
http://raytracinggems.com
https://developer.nvidia.com/optix
https://developer.nvidia.com/optix
https://www.cg.tuwien.ac.at/courses/Seminar/SS2007/RealtimeRayTracing-Recheis.pdf
https://www.cg.tuwien.ac.at/courses/Seminar/SS2007/RealtimeRayTracing-Recheis.pdf
https://news.developer.nvidia.com/ray-tracing-essentials-part-6-the-rendering-equation/
https://news.developer.nvidia.com/ray-tracing-essentials-part-6-the-rendering-equation/
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://www.khronos.org/blog/ray-tracing-in-vulkan

A. Bibliography.....................................
[TR12] Thorsten Grosch Jan Kautz Tobias Ritschel, Carsten Dachsbacher,

The state of the art in interactive global illumination, Computer
Graphics Forum, 2012.

[UER] Real-time ray tracing in unreal engine, https://docs.
unrealengine.com/en-US/Engine/Rendering/RayTracing/
index.html, Accessed: 2020-01-15.

[VKR] Introduction to real-time ray tracing with vulkan, https://
devblogs.nvidia.com/vulkan-raytracing/, Accessed: 2020-01-
15.

[Whi80] Turner Whitted, An improved illumination model for shaded display,
Communications of the ACM, 1980.

54

https://docs.unrealengine.com/en-US/Engine/Rendering/RayTracing/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/RayTracing/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/RayTracing/index.html
https://devblogs.nvidia.com/vulkan-raytracing/
https://devblogs.nvidia.com/vulkan-raytracing/

	Introduction
	What is Ray Tracing
	Basics of Ray Tracing
	Ray Tracing APIs
	NVIDIA OptiX
	DirectX DXR
	Vulkan Ray Tracing Extension

	Ray Tracing in Unreal Engine
	Setting Up Ray Tracing
	System Requirements
	Configuring a New Project

	Available Effects and their Settings
	Shadows
	Reflections
	Translucency
	Ambient Occlusion
	Global Illumination

	Benchmarks
	Testing Environment
	Benchmark 1 - Room
	Benchmark 2 - Balls
	Benchmark 3 - Shore
	Non-RTX Performance
	Scene Scalability Testing
	Unreal Engine Version Comparison

	Performance Optimization
	Deciding Which Ray Tracing Effects to Utilize
	Denoising vs Samples per Pixel
	Other Ray Tracing Settings

	Unreal Engine Ray Tracing Demo
	Controls
	Quality Settings
	Quality Presets User Testing

	Conclusion
	Bibliography

